A Study on Rising Atmospheric Pollution in Rural India

Researchers from Indian Institute of Technology (IIT) Kharagpur have found increasing atmospheric pollution in rural India using Nitrogen Dioxide (NO2) measurements from satellites. Prof. Jayanarayanan Kuttippurath and Research Scholar Mansi Pathak of Centre for Ocean, River, Atmosphere and Land Sciences (CORAL) of IIT Kharagpur analysed the significant impact of urban pollution on the air quality of rural India by differentiating the pollution in two zones – rural and urban – and assessing the extent of air pollution in rural India. The researchers found that air pollution is not typically an urban phenomenon but can also affects the environment in rural perimeter. They conducted an analysis of the rural air quality to assess the extent of air pollution by measurements of NO2 through satellite imaging. The analysis carefully delineates the rural and urban regions of India, to examine the unheeded rural air pollution. Most air pollution assessments till date, discussed only the urban air quality issues. This analysis exposes increasing trends (0.05–0.44×1015molec./cm2/yr) of NO2 in the rural regions of India.

The study titled “Air Quality Trends in Rural India: Analysis of NO2 Pollution using Satellite Measurements,” highlights that rural sources account for 41 per cent of the overall NO2 pollution in India of which 45 per cent and 40 per cent are from transportation and power sectors, respectively. As the sources of NO2 are well coupled to the industrial and economic upliftment of a nation, the analyses for the rural regions show distinct seasonal changes with the highest value (2.0 1015 molecules per cm2) in winter and the lowest in monsoon (1.5 1015 molecules per cm2) seasons.

Prof. Jayanarayanan Kuttippurath
CORAL
IIT Kharagpur

“What we observe is that there is a decline in air quality in rural India in terms of our NO2 analysis, which is not beyond the threshold levels now, except in regions such as Delhi and suburbs and eastern India. However, given the positive trend in NO2 concentration, the high rate of urbanization and relocation of industries to suburbs, growing population and development activities, other regions of India would also cross the pollution threshold to impact the health of its people, and thus, our massive rural population. This is the real concern and it is the right time to take appropriate actions to control the atmospheric pollution in rural India,” explained Prof. Jayanarayanan Kuttippurath of CORAL, IIT Kharagpur. 

Air pollution is one of the biggest problems in India’s major cities. Comparison of pollutant-wise highest health risk values show that NO2 is about 19 times more harmful than Particulate Matter (PM) and about 25 times more risky than that of Sulphur Dioxide (SO2) . The population residing in the regions of high NO2 such as in the proximity of power plants, industries, cities, and in the areas above the permissible limit, are prone to be at high risk of adverse health effects such as asthma, bronchitis, pneumonia and cardiovascular diseases.

 Ms. Mansi Pathak
Research Scholar
IIT Kharagpur

Research Scholar, IIT Kharagpur and lead author of the paper, Ms. Mansi Pathak, stated, “We usually think the atmospheric pollution exists only in cities or it is just an urban threat. The air quality standards in rural regions are often neglected. However, our analysis suggests that it is high time to shift our focus to rural regions and examine the pollution levels and health issues of rural India. This is of paramount importance for a country like India, as rural areas have about 67 per cent of the country’s population (947 million) as of 2020 and public health today stands out to be the utmost priority globally.”

The indirect impact of NO2 on global climate change is not less with a net cooling effect attributed to the oxidation-fueled aerosol production.

Figure: The average concentration and long-term trends in atmospheric NO2 in India for the period 1997-2019.

High Nitrogen Oxide (NO) – which includes Nitric Oxide and Nitrogen Dioxide – levels in the troposphere can alter ozone formation, contribute to nitrate aerosol formation and acid deposition and affect regional climate.

Prof. Kuttippurath said though, other Indian rural regions are under permissible limits of CPCB, the increasing trends in NO2 would surpass the standards in future if no controlling measures are implemented, which is a serious concern.

This study suggests the need for taking action towards improving rural air quality to reduce the impact of air pollution on the large rural population of India. Although NO2 is a non-abundant gas, its indirect impact on global climate change is likely to be greater, with a net cooling effect attributed to the oxidation-fueled aerosol production. NOx levels in the troposphere can alter ozone formation, contribute to nitrate aerosol formation, and acid deposition and affect regional climate. The regions covered in this study are Indo-Gangetic plain, Central India, North-West India, Peninsular India, Hilly Region and North-East India where the authors analysed atmospheric NO2 concentration in different regions of India for the period 1997-2019.

Figure: Rural and urban atmospheric NO2 concentration in different regions of India for the period 19972019.

“Regulations similar to the Bharat Stage norms (for limiting vehicular emissions) need to be implemented in thermal power plants and industries located in both rural and urban regions, to restrict the overall NO2 pollution in rural India. Introducing new natural gas-fed power plants or using selective catalytic reduction (SCR) in older power plants can also reduce emissions, and thus, the NO2 pollution in rural India,” pointed out the researchers.

Publication Links: https://doi.org/10.1039/D2EM00293K

Media Coverage:

PTI UNI Indian Express
Economic Times Dainik Jagran Business Standard
The Print IBC 24 Neo Science Hub

Contact Person: Prof. Jayanarayanan Kuttippurath of CORAL, IIT Kharagpur
Email: jayan@coral.iitkgp.ac.in

Edited By : Poulami Mondal, Digital & Creative Media Executive (Creative Writer)
Email: poulami.mondal@iitkgp.ac.in, media@iitkgp.ac.in, Ph. No.: +91-3222-282007

Follow us on: Facebook – IIT Kharagpur; Twitter – @IITKgp;  Instagram – @iit.kgp; LinkedIn – Indian Institute of Technology
For news visit: https://kgpchronicle.iitkgp.ac.in/ 

Effective Control Technologies to Reduce Sulphur Dioxide Pollution In India

FLUE GAS DESULPHURIZATION REDUCES SO2 POLLUTION IN INDIA

A study by a team of researchers from IIT Kharagpur led by Prof. Jayanarayanan Kuttippurath from Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL) found a significant decline in SO2 trends in India in the last decade, as compared to those in the previous three decades. The decrease in trend and concentration of SO2 is due to the environmental regulation and adaptation of effective control technologies such as scrubber and Flue Gas Desulphurization that shows the positive impact of technological advance and policy decisions to improve the air quality in India. The study represents temporal changes in SO2 concentrations over India in the past four decades (1980–2020). Thermal power plants (51%), and manufacturing and construction industries (29%) are the main sources of anthropogenic SO2 in India. The temporal analyses reveal that SO2 concentrations in India increased between 1980 and 2010 due to high coal burning and lack of novel technology to contain the emissions during that period. Both economic growth and air pollution control can be performed hand-in-hand by adopting new technology to reduce SO2 and GHG emission.

Prof. Jayanarayanan Kuttippurath
Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL)
IIT Kharagpur

“SO2 is an atmospheric pollutant and can be converted to sulfate aerosols in high humid conditions. These aerosols can affect cloud reflectively, rainfall and regional climate by modifying the radiative forcing.  At high concentrations, SO2 affects adversely on human health and ecosystem as well. Therefore, continuous monitoring of its abundance in the atmosphere is highly warranted, as these kind of analyses would help making the policy decisions related to emissions. This particular study is serving that purpose,” remarked Jayanarayanan Kuttippurath, Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), IIT Kharagpur and the lead author of the study.

Sulphur dioxide (SO2) is one of the criteria pollutants that mainly released from the coal-based thermal power plants. At higher concentrations, it has hazardous affects on public health and environs. In this study, we find a significant decline in SO2 trends in India in the last decade, as compared to those in the previous three decades. The decrease in trend and concentration of SO2 is due to the environmental regulation and adaptation of effective control technologies such as Scrubber and Flue Gas Desulphurization showing the positive impact of technological advance and policy decisions to improve the air quality in India.

“Our analysis shows Indo-Gangetic Plain and Central and Eastern India regions as the SO2 hotspots in India. Although there is a relative reduction in SO2 in the last decade, the concentration of SO2 is still very high in these regions. Therefore, we need to continue our efforts to reduce SO2 emission in India, whether it is with innovative technology or environmental regulations,” said Vikas Kumar Patel, another author of the paper.

Fig 1: The SO2 trends in the last four decades in India. A rapid economic development in the 2001-2010 periods shows the largest trends among the decades. However, the recent decades with technological advance and environment policies help to reduce atmospheric SO2 concentrations and its trends.

An improved air quality monitoring network is needed to understand the spatial and temporal changes of pollutants, which would help to make policies relevant to improve air quality and to meet targeted reduction in emissions. The measurements and emissions in this study have uncertainities and are not computed in absolute figures. However, the trends computed are statistically significant across all Indian regions. Therefore, the findings have important implications for future environmental policies on India’s SO2 emissions and for understanding the impact of SO2 on regional climate, air quality, ecosystem dynamics, and public health. This study also provides a baseline for future studies that would critically examine changes in SO2 pollution as a result of the country’s socio-economic development.

“What we have found from our analysis is that, SO2 has been increasing in India for the past few decades, consistent with our economic development, but a declining trend in SO2 is found in the last decade (2010-2020). This is a good sign. The implementation of Bharat Stage norms on vehicular emissions, regulations for power plants to employ scrubber and FGD technologies, and policies encouraging the production of renewable energy may have contributed to this reduction in SO2 emissions,” added Prof. Kuttippurath.

Fig 2: Ground-based measurements also show reduction or stabilization of SO2 emissions; as shown for different cities here.

Due to rapid industrialization and urbanization in the past decades, India’s energy demand has been increased substantially with coal consumptions. The expansion of coal-based electricity generation in India is the primary cause of the country’s high emission. Although these help economic development of the country, the air pollution also increases along with it, which poses a health concern. Currently, India is one of the world largest emitters of SO2, accounting for more than 15% of global anthropogenic emissions. The situation warrants reduction SO2 emission in our country. However, majority of coal plants in India lack the Flue-Gas Desulfurization (FGD) technology necessary to adequately remove SO2 emissions. On the other hand, India’s power sector has seen an increase in renewable energy capacity, which would help to curb the pollution in India.

Prof. V K Tewari, Director, IIT Kharagpur stated, “India relies heavily on coal-based thermal power plants to meet its energy demands. Analysis of spatial and temporal changes in SO2 using accurate and continuous observations is required to formulate mitigation strategies to curb the increasing air pollution in India. Since 2010, India’s renewable energy production has also increased substantially when India adopted a sustainable development policy. The shift in energy production from conventional coal to renewable sources, solid environmental regulation, better inventory, and effective technology would help to curb SO2 pollution in India. India’s nationally determined contributions under the Paris Agreement includes achieving about 40% cumulative electric power installed capacity from non-fossil fuel-based energy resources by 2030. This commitment would help to reduce the dependency on the coal-based energy, and also help to curb the SO2 pollution in the future.”

Publication Links:

https://doi.org/10.1007/s11356-022-21319-2

Media Coverage:

Economic Times The Hindu Business Standard
Deccan Herald Financial Express Telegraph
Jagran The Print Siasat
Khabar Dunya The Hans India Gulf Today
Mongabay    

Contact Person: Prof. Jayanarayanan Kuttippurath, Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL)
Email: jayan@coral.iitkgp.ac.in

Edited by : Poulami Mondal, Digital & Creative Media Executive (Creative Writer)
Email: poulami.mondal@iitkgp.ac.in, media@iitkgp.ac.in, Ph. No.: +91-3222-282007

Follow us: Facebook – IIT Kharagpur; Twitter – @IITKgp;  Instagram – @iit.kgp; LinkedIn – Indian Institute of Technology
For news visit: https://kgpchronicle.iitkgp.ac.in/ 

Ammonia Hotspot Trends in India – First-time observations from India

Indo-Gangetic Plain an atmospheric ammonia hotspot but India’s overall trends look promising

Agro fertilizers containing high levels of ammonia have long been designated as a hazardous material for human health. For the first time in India, the seasonal and inter-annual variability of atmospheric ammonia emitted by the agricultural sector has been analyzed by researchers from IIT Kharagpur in collaboration with IITM Pune and European researchers. And the results are in agreement with the long-held apprehension of global environmentalists – the Indo-Gangetic Plain (IGP) is indeed the global hot-spot of atmospheric ammonia (NH3) due to intense agricultural activities and fertilizer production there. 

Using IASI satellite measurements to analyze the seasonal and inter-annual variability of atmospheric NH3 over India for the period 2008–2016, the researchers observed atmospheric ammonia growing rapidly at a rate of 0.08% annually during the summer-monsoon (Kharif crop period) season from June to August. The study further confirmed a direct correlation between NH3 emissions and fire counts and reports a high volume of atmospheric ammonia in the same season. They delineated the data for global industrial, agricultural, and natural NH3 hotspots.

The satellite data we collected for agricultural emissions show a positive correlation of atmospheric ammonia with total fertilizer consumption and temperature since high temperature favours volatilization and is negatively correlated with total precipitation as wet deposition helps removal of atmospheric ammonia,” explained Prof. Jayanarayanan Kuttippurath from IIT Kharagpur’s Centre for Oceans, Rivers, Atmosphere. 

Atmospheric ammonia is typically generated due to agricultural activities including the use of nitrogenous fertilizers, manure management, soil and water management practices and animal husbandry. It is very dynamic as it is constantly exchanged between the atmosphere and biosphere. In India, there has been a lack of detailed information about atmospheric ammonia, which is a significant contributor to atmospheric pollution and deterioration of air quality. This is particularly important for IGP as there are many cities including New Delhi.

This study titled “Record high levels of atmospheric ammonia over India: Spatial and temporal analyses” and published recently in Elsevier journal “Science of the Total Environment”, is pioneering research from India in measuring the dynamics of atmospheric ammonia over the region and validated the data supporting India’s commitment to reduce atmospheric pollution and development of global pollution control initiatives. Apart from IGP, data from across the country show some regional hotspots in northwest and southeast India. The study also mentions that there are positive trends in atmospheric NH3 over the agricultural areas of the United States, China and Europe, about 1.8–2.61% annually, depending on regions. However, the general trend in atmospheric ammonia over India is negative in most seasons.

“Observing the overall trend, we can therefore assert to being sincere to our pledge at the Paris Climate Summit towards reducing atmospheric emissions through initiatives under the National Clean Air Programme though we have to be relentless in our efforts to reduce the emissions at the Indo Gangetic Plain, which would otherwise have detrimental effects on the human health, ecosystems and climate,” added Prof. Kuttippurath.

Deliberating on possible remedies co-authors Mr. Ajay Singh and Prof. Nirupama Mallick from the IIT Kharagpur’s Department of Agricultural and Food Engineering emphasized the wider adoption of precision farming along with seasonal restrictions on the use of fertilizers.

“Agriculture, in its conventional form, contributes significantly to the atmospheric emission of gaseous ammonia that plays a key role in the deterioration of air quality over the whole of India by actively contributing to the formation of secondary aerosols. This demands regulations on the amount of fertilizer application in cropping seasons in arable lands, in place of conventional blanket recommendation practices, along with viable strategies to curb farm emissions” remarked Prof. Nirupama Mallick from the Dept. of AGFE.

Citation: J. Kuttippurath, A. Singh, S.P. Dash, N. Mallick, C. Clerbaux, M. Van Damme, L. Clarisse, P.-F. Coheur, S. Raj, K. Abbhishek, H. Varikoden, Record high levels of atmospheric ammonia over India: Spatial and temporal analyses, Science of The Total Environment, Volume 740, 2020, 139986, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.139986.

Media Coverage:

Economic Times Financial Express Business Standard
Hindustan Times The New Indian Express Yahoo News
Lokmat The Tribune Outlook
Times Now Navbharat Times Hindu BusinessLine

Contact:

Research: Dr. Jayanarayanan Kuttippurath, Assistant Professor, Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), IIT Kharagpur, Email: jayan@coral.iitkgp.ac.in

Media: Shreyoshi Ghosh, Executive Officer (Media & Communication), IIT Kharagpur, Email: shreyoshi@adm.iitkgp.ac.in

For news and information please visit: https://kgpchronicle.iitkgp.ac.in

Follow IIT Kharagpur on social media: Facebook: @IITKgp     Twitter: @IITKgp    Instagram: @iit.kgp  

It’s Illumination Time

The Hindu             Business Standard      DNA        Janprahari Express        ANI        Rediff        Zee 24  TAAS           News18 Bengali          Zee 5          Reddit      Yahoo

Walking down the halls of residence at the IIT Kharagpur campus during the Diwali festival one would come across giant bamboo structures and busy students tying earthen lamps (diyaas) to them in patterns. There is no rush for firecrackers among the 12000 strong student population of IIT Kharagpur but a wait for the Diwali eve when any visitor would be awed by the lighted canvas telling stories from Indian history and mythology, Indian or global political issues, socio-economic issues etc.

When the country is debating the ban on firecrackers and whether to extend the same to other festivities and celebrations; when people are still hoping to get lucky with the green crackers which have been out of stock in the market; when the world is still debating about climate change with groups trying to find perspectives in the voices raised by climate change evangelists; the students in their late teens and 20s have quietly established a tradition of going green every Diwali for the past four decades.

 “Our campus is stretched across 2100 acres but the halls of residence are located in a particular area. Think what would we do to our homes at Kgp if thousands of firecrackers are burnt for an entire evening! Instead, in typical IIT KGP style our seniors in the early 1980s turned this challenge into an opportunity and pledged to shun air pollution and replace it with creativity, teamwork, innovation and leading to creating art forms which was named Illumination,” said a proud Akshat Jain, 3rd year UG student of Agricultural and Food Engineering department, who also heads the Public Relations Chair of Technology Students Gymkhana, the student nerve centre of IIT Kharagpur.

In the true spirit of Diwali, Illumination disseminates a wave of excitement and enthusiasm throughout the campus. It marks the triumph of endless night-outs, mammoth hours of planning and exemplary teamwork uniting the whole campus community and making a yearly statement of how nature can be saved following a long-standing tradition. To begin with, the basic raw materials comprising of steel wires, bamboo, and diyas, students transform them into magnificent structures with unique themes varying with Halls of residence which shine against the dark making every KGPian proud and spirited. The diyas are hung to designing of gigantic canvasses made of bamboo structures or Chatais about 20 ft high with an average area of 1500 sq.ft. On the eve of Diwali as the visitors start coming in one hall after another start lighting up these diyas creating a mesmerising view to which only professional artistes may be able to compete.

“This culture is followed by 23 halls of residence where artist’s canvases are created and these artistes are none other than students of IIT Kharagpur. Such a non-polluting way of celebration benefiting the local community both environmentally and economically in this scale would be difficult to find elsewhere in the world to the best of my knowledge. Illumination I would say, is the indigenous festival of IIT Kharagpur,” beamed Akshat.

Talking about this green Diwali tradition, Officiating Director of IIT Kharagpur Prof. Sriman Kumar Bhattacharyya said, “Illumination is done with a grandeur without causing any harm to the environment. It is a green process because the students do not burn any material which could be considered as highly pollutant. This could also be observed the day following Diwali when the air at the IIT Kharagpur campus as fresh as the other days unlike the scenario in most urban areas.”

This led to a direct, positive impact on the campus environment by preventing unwanted noise and air pollution while at the same time saving large on electricity expenditure on the day of Diwali by going traditional. And then there is the novelty of supporting the livelihood of local shopkeepers selling the materials required for this celebration. 

Together with Illumination is another indispensable part of Diwali at IIT Kharagpur – “Rangoli”. The IIT KGP Rangoli is very different from what is traditionally thought of as Rangoli per se. These are huge murals made on the floor with colors mixed with sand. The sand is sifted at least a hundred times to get a fineness that is silvery smooth when running through the fingers. The colours are sourced locally or sometimes, from South India, for some colours that are rare. Students work on deciding the theme and design and ultimately executing the work. The themes are multifarious – scenes from myths, folklore or contemporary accounts of violence or victory, addressing social issues and achievements of Indians.

This unique festival of IIT Kharagpur has more takers than the campus residents and students. Just like pandal hopping, thousands of visitors from outside the campus do hostel hopping on the eve of Diwali before the diyas run out of oil and the wind takes charge. The festival is also highly popular with the international students who enthusiastically take part in the preparation in their respective halls of residence.

Prof. Anandroop Bhattacharya, Associate Dean of International relations of the institute who was alumnus of 1997 batch said that “illumination  event is something every KGPian is proud of. Nowhere is  Diwali celebrated in the world as it is done at  IIT KGP. Through decades we have been able to show that there is a clean and green way of celebrating Diwali.”

To share the art form with more connoisseurs from the global community, this year the Office of International Relations launched a holistic short-term certification program Dyuti focussing on Indian science, technology, heritage and culture with a workshop on Illumination and Rangoli. International students of various nationalities who are already studying in India joined the week-long programme are to join the day-long workshop at the halls of residence where they will take part in the making of the grand designs and take back home an experience which can transform festivities across the globe to cleaner celebrations without missing the joy of it.