Tropical Rainforest will Survive the Future global warming: finds IIT Kharagpur study

The tropical rain forests (TRF) like Amazon or Western Ghats are considered as “the lungs of the planet”, contain about 200-300 petagram (1015) or approx. 1/3rd of the total atmospheric carbon and plays a crucial role in modulating the global carbon cycle, biodiversity and hydrological cycle. The 2023 AR6 report by the Intergovernmental Panel on Climate Change (IPCC) warns if the CO2 emission and global warming continues unabated the TRF community may altogether collapse much before the end of this century, and will drive a global catastrophe affecting nearly 800 million people worldwide. However, scientists are sharply divided on this issue. Predictions made through climate-vegetation models suggest that just a 2˚C increase in mean annual temperature could increase the respiration rates and push trees to their photosynthetic threshold causing their mortality. This will be compounded by increased extreme events like variability in rainfall, droughts and wildfires. Yet others think that over longer time scale plants will adapt to these changes by changing their diversities or invading into favourable climate zones. This has indeed been found in the Andes where low elevation warmer region trees are invading into the colder higher altitude region. In the Himalayas the Rhododendrons blooming time is slowly changing. The only way to test these contradicting predictions is to study the evolutionary record of the TRF plant community and the climate in the past when the earth went through natural warming phase due to high CO2 emission.

Position of Indian landmass 56 million years back with location of Vastan, Gujarat (Yellow asterisk)

A team of scientists from IIT Kharagpur, Calcutta University and University of Western Ontario have studied detail records of TRF in sediments from Vastan coal mines of Gujarat deposited in coastal lagoons around 56 million years back.  India was a tropical island then surrounded by oceans and Himalayas were yet to form. The period is known as Palaeocene-Eocene Thermal Maximum (PETM) when global carbon dioxide rose to >1000 ppmv, an abnormally high level that the future global warming might reach. The PETM is the most rapid global warming event known in Earth’s history. An amount of carbon approximately equal to the total modern fossil fuel reservoir was released in the ocean-atmosphere system due to release of carbon stored in sea-floor sediments. The coal layers in Vastan are nothing but a spectacularly fossilized tropical rain forest containing huge amount of plant and pollen remains as well as variety of mammals and insects those lived in these forests. In fact, world’s earliest mammals evolved here due to this climate shift at PETM.

The Coal beds of Vastan that was once a dense tropical rain forest

“The study took several years of field and laboratory investigation. We had to date the sediments to confirm its PETM age and collected samples at centimeter intervals, analyzed the pollens to understand how the TRF community evolved in response to such extreme global warming. To understand how the climate changed during this super-greenhouse globe we analyzed isotopes of carbon in the plant organic matter and developed special techniques of measuring isotopes of oxygen and hydrogen in micron size clay mineral kaolinite that precipitated in these lagoonal water. The climate was also monitored by analyzing oxygen isotopes in fossil teeth of small horse-like ungulate mammals those once roamed in these forests,” said Prof. Anindya Sarkar, the lead researcher of IIT Kharagpur. The study has just been published online in prestigious El Sevier Journal Global and Planetary Change.

Fossil remain of plant that grew during the super greenhouse earth

“Pollens are widely dispersed by air and water, resistant to decay and are invaluable indicators for reconstructing ancient biomes. Evidence of huge diversity (70 families and 256 taxa) of dense tropical rainforest trees like Sal, Mahogany, Palm, a variety of evergreen and mangrove plants are preserved in the sediment and coal beds of Vastan. No wonder that such rain forest harbored diverse animals including ancestors of early horses, snakes and insects,” said Prof. Subir K Bera of Calcutta University, an expert in ancient plants and co-author of the paper.

Pollens of 56 million year old rain forest trees

“We found a large anomaly in carbon isotopes exactly at 56 million year. This was such a characteristic signal for a super greenhouse globe with very high atmospheric CO2. The hydrogen and oxygen isotope compositions in clays depend on land temperature and amount of rainfall and act as snapshots of past climate. Likewise, the isotopes in fossil teeth record the history of what water animals drank. As the CO2 began to increase, the land became abnormally hot >40oC. But to our surprise we found that the temperature came down to ~30oC during the later period, almost similar to today. The rainforest not only survived but also diversified during and after this global warming phase,” said Arpita Samanta, a former PhD student at IIT Kharagpur currently Assistant Professor at Asutosh College, Calcutta and the lead author of the paper.

An extinct fly preserved in tree amber of Vastan (photo courtesy Dr. H.S. Rana, Birbal Sahni Institute of Palaeosciences, Lucknow)

“What helped the rainforest’s survival? We critically looked at the rainfall pattern and found that the warming intensified the rainfall and that possibly brought down the temperature. We call it rainfall buffered temperature. The increased rainfall and lowered temperature sustained these ancient rainforests of western India,” said Dr. Melinda K Bera, an isotope expert who painstakingly developed the novel clay based thermometer and a co-author. 

“The Vastan record is unique in many ways. This is the first record of how tropical rainforest responded to elevated levels of CO2 and global warming in the past. The only other available record is from Neotropical South America. Vastan data shows that globally tropical plant community responded in tandem. Second, the increased rainfall during this super greenhouse earth exactly supports the IPCC prediction of intensified precipitation regime in case of a future extreme 4oC warming of the planet. Vastan is an ancient analogue of what our future greenhouse earth can be. Fossil fuel emission has increased the CO2 from pre-industrial level of 280 ppm to ~421 ppm in 2024. Climate models suggest that a doubling of CO2 will intensify the atmospheric circulation and consequently the rainfall. Nature already did experiment in the past that has lessons for us to learn. Many experts believe that the climate change due to such fast rate of global warming is now irreversible and collapse of rainforest or ocean biosphere is just imminent. The Vastan record shows that there may be some hope. At least the rain forest may take the heat stress and survive,” added Prof. Sarkar.

Reference: The Temperature-Precipitation Duel and Tropical Greening during the Early Eocene Greenhouse Episode by Samanta A. et al., Global and Planetary Change, Available online 16 October 2024, 104603:

https://www.sciencedirect.com/science/article/pii/S0921818124002509

Media Coverages:

Times of India UNI
The Hindu Statesman
Uttarbanga Sambad Biplabi Sambad Darpan

                                Uttarbanga Sambad 

                                         Coalfield Mirror

By : Prof. Anindya Sarkar, Department of Geology and Geophysics, IIT Kharagpur
Email: sarkaranindya@hotmail.com

Follow us on: Facebook – IIT Kharagpur; Twitter – @IITKgp;  Instagram – @iit.kgp; LinkedIn – Indian Institute of Technology
For news visit: https://kgpchronicle.iitkgp.ac.in/

IIT Kharagpur discovers Isotopes in Fossil Trees from Deccan Trap Lavas that Indicate Wetter Future Due to Global Warming

 

Deccan Trap lava hills in Western Ghats (Left) and columnar basaltic lavas (Right) which erupted 66 million years back killing dinosaurs and most life on earth.

A team of scientists from IIT Kharagpur and Academia Sinica, Taipei have indeed found evidence of triple oxygen isotopes of intertrappean fossil woods that led to very high annual rainfall during the catastrophic volcanism of Deccan trap that erupted in India about 66 million years back. The eruption drove a major mass extinction killing nearly 80% of all species of animals including the Dinosaurs. The depleted values of the oxygen isotopes suggest a higher tropical rainfall (1600 mm/y) in island India during terminal Cretaceous period. The increase in rainfall and its waning in the early Palaeocene closely follows change in palaeo-atmospheric pCO2 suggesting a possible underlying link. The inferred rainfall increase is consistent with modern climate models and palaeobotanical evidence.

Prof. Anindya Sarkar
Department of Geology and Geophysics
IIT Kharagpur 

“The available records of the atmospheric CO2 concentration and temperature over both land and ocean during the time of Deccan Trap eruption were analyzed. This was a period of cataclysm. All around the central and western India, Deccan trap lavas were erupting spewing huge amount of CO2 from deep interior of the earth thus increasing the then atmospheric CO2 concentration to as high as 1000 ppm (parts per million). The land and ocean temperatures increased by ~13°C and ~4°C respectively. It was a hot earth and unbearable for life. The rainfall, both before and after this high CO2 concentrated earth was just as normal as today. This was an ancient analogue of what our future greenhouse earth could be,” said IIT Kharagpur’s Prof. Anindya Sarkar of Geology and Geophysics who led the research.

Fossil fuel emission has increased the CO2 from pre‐industrial level of 280 ppm to ~420 ppm in 2023. Climate models suggest that a doubling of CO2 will intensify the atmospheric circulation and consequently the rainfall. Many experts, however, believe that the climate change due to such fast rate of global warming is now irreversible and another mass extinction is just imminent, added Prof. Sarkar.

66 million year old fossil trees from the lake sediments within Deccan lava flows and microscopic photograph of vascular bundles in palm tree (left), and Scanning electron microscopic image of the cellular structures of fossil palm trees (right)

The 2023 AR6 report by the Intergovernmental Panel on Climate Change (IPCC) warns if the CO2 emission and global warming continues unabated, annual wettest day precipitation will increase by manifold across all continents. Monsoonal precipitation associated with tropical cyclones over India will also increase by 40%. While these predictions are made through climate models, they can only be tested by studying the rainfall record in the past when the earth went through natural warming phase due to high CO2 emission.

The laser ablation system developed at IIT Kharagpur capable of analyzing ultra‐low quantity of rare isotopes of oxygen in silicate phases (shown by arrow)

 

“Deccan Traps are one of the most voluminous basaltic volcanic lavas erupted on Earth covering over 500,000 sq. km of the west‐central Indian subcontinent. We retrieved the past rainfall by analyzing oxygen isotopes in fossilized trees those grew around the lakes formed over the basaltic lavas of Deccan traps. It was as if an ancient forest was fossilized. These lakes were formed during the quiescent period between two successive lava flows. Known as intertrappeans, the sediments in these lakes contain abundant plant, frog and fish fossils. The trees were exceptionally well preserved and buried immediately after they fell in lake beds making them robust climate recorder,” added Prof. Sarkar.

Prof. Mao Chang Liang
Academia Sinica

“We studied very high magnification images of several palm trees from these lake sediments and found that their internal cellular structures are preserved just like modern trees,” said collaborator Prof. Mao Chang Liang from Academia Sinica.

There is considerable debate about the effect of future global warming on tropical precipitation. Interpretations from the global climate models differ due to an inadequate understanding of the processes controlling rainfall and associated feedback. The robustness of the predictions is also limited due to the lack of deep time data of precipitation in a high CO2 and warmer globe that existed in the geological past.

Sangbaran Ghoshmaulik
Ph.D Student
IIT Kharagpur

“Getting information about the past rainfall is tricky. We used a very novel and new technique of Laser beam as well as NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) where the fossil trees were analyzed for all the three isotopes of oxygen namely, 16,17, and 18. The isotopes in the fossil trees record the isotopic composition of the lake water derived from rainfall. Analyzing isotopes of mass 17 is difficult since it occurs in extremely small quantity in natural materials. Globally there are only three or four laboratories those can reliably do this job. It took nearly four years for us to develop this method but once done the results were very startling” said Sangbaran Ghoshmaulik, a Ph.D student at IIT Kharagpur and the lead author of the paper.

The Cretaceous period represents an example of hot deep sea and land temperatures often exceeding 10 °C and 30 °C respectively and high CO2 earth. The intertrappean sediments deposited during the voluminous basaltic outpouring of end-Cretaceous Deccan volcanism in India provide a unique repository to infer the magnitude of tropical precipitation during an enhanced greenhouse period.

Prof. Sourendra Bhattacharya
Co‐author of the Paper
IIT Kharagpur

“Excepting the arid/semi‐arid regions, the modern annual rainfall over large part of peninsular India on an average is about 1000‐1200 mm. Our data suggested that these fossil trees recorded 1800‐1900 mm/year rainfall. This is exactly what the IPCC predicts in case of a future extreme 4oC warming of the planet,” said Prof. Sourendra Bhattacharya, a co‐author of the paper. The study has just been published online in prestigious Elsevier Journal Chemical Geology.

Link of the paper:
https://www.sciencedirect.com/science/article/abs/pii/S0009254123002991

Media Coverage :

Times of India The Hindu
Ananda Bazar Patrika UNI
Outlook India Dainik Jagran

                     Sunday Times             

                                                                                               

 

 

 

 

 

 

 

                            Dainik Jagran

Contact person : Prof. Anindya Sarkar, Department of Geology and Geophysics, IIT Kharagpur
Email: sarkaranindya@hotmail.com

Edited By : Poulami Mondal, Digital & Creative Media Executive (Creative Writer)
Email: poulami.mondal@iitkgp.ac.in, media@iitkgp.ac.in, Ph. No.: +91-3222-282007

Follow us on: Facebook – IIT Kharagpur; Twitter – @IITKgp;  Instagram – @iit.kgp; LinkedIn – Indian Institute of Technology
For news visit: https://kgpchronicle.iitkgp.ac.in/ 

IIT Kharagpur Researchers Aids to Green Construction to Reduce Global Warming

Climate change and green and sustainable growth have found top most importance in India’s G20 presidency this year. Not only India, but all the leading economies have spoken in one voice on it. To revolutionize green construction, a team from IIT Kharagpur, Department of Electronics and Electrical Communication Engineering, led by Prof. T.K Bhattacharyya, Scientist Dr. Jhimli Manna, Mr. Ayan Chatterjee, and Dr. Debmallya Das have developed and patented a Nano-Engineered Graphene derivative to reduce clinker factor from cement as well as concrete which can save the CO2 emission upto 25% annually. In addition, it will help to reduce the cost of cement production by approximately 2000 crore INR annually for the leading cement manufacturers whose annual production volume is 120 million tons. This is mainly achieved by reducing the cost incurred due to clinker production and energy consumption, with an added advantage of green taxation.

Cement Industry is the second major contributor of CO2 emission [8%] which leads to global warming with more than 4.4 billion tons produced every year, a number that is expected to grow to 5.5 billion by 2050. This is due to the clinker production which is the main component of strength for cement. But we cannot essentially remove the clinker as lower clinker means lower strength. Hence the major challenge in developing green cement for all cement companies across the globe lies in reducing the clinker without compromising the strength of cement.

 

Nano-Engineered Graphene derivative contains a unique product fingerprint which helps in physical removal of clinker, enhancing strength by 25%. It also reduces water to cement ratio leading to water conservation specially beneficial for water starved areas. The product can be easily produced in large scale, hence can be seamlessly integrated into the existing industrial process flow, downsizing energy consumption. The nanoengineered graphene reinforced cement and concrete reduces crack propagation, enhances durability and resilience with lesser curing time without disrupting the current operating process. It can cater to the need of PPC, OPC, and slag based cement industries. The researchers  have successfully reduced clicker in industrial setting by up to 25% without compromising strength.

“The CO2 emission during cement production increased steeply by 1.8% per year during 2015-2020. In this scenario, we must decarbonize its production to reduce the carbon footprint for a greener future and meet the commitment to deliver Net Zero Emission by 2050. Almost all the national and international cement producing giants have focused their efforts in developing green cement using different strategies. A few of them have used clinker reduction strategies but till date none of them have declared a cement composition with physically reduced clinker which is the need of the hour. In this scenario, this technology is a breakthrough in revolutionizing green construction,” remarked Prof. T K Bhattacharyya, who is the professor at Department of Electronics and Electrical Communication Engineering, and head of Advanced Technology Development Centre, IIT Kharagpur.

Microelectronics and MEMS Laboratory
Department of Electronics and Electrical Communication Engineering 
IIT Kharagpur

The production of cement is the most carbon-intensive part which involves using fossil fuels to heat a mixture of limestone and clay to more than 1,400  °C in a kiln. When limestone (calcium carbonate) is heated, roughly 600 kilograms of carbon dioxide is released for every ton of cement produced.

The product has already been validated from two places. Firstly, it is tested in laboratory at the Civil Engineering Department at IIT Kharagpur and then MVP has been validated at the industrial testing laboratories of one of the major cement producing companies. A patent has also been filed and published.

Media Coverage :

                                                             Times of India

    Times of India (Online)                               Dainik Jagran        

                                                                                                             Coalfield Mirror                                                                                                   Hindi Bartaman

Contact Person: Prof. Tarun Kanti Bhattacharyya, IIT Kharagpur
Email: tkb@ece.iitkgp.ac.in

By : Poulami Mondal, Digital & Creative Media Executive (Creative Writer)
Email: poulami.mondal@iitkgp.ac.in, media@iitkgp.ac.in, Ph. No.: +91-3222-282007

Follow us on: Facebook – IIT Kharagpur; Twitter – @IITKgp;  Instagram – @iit.kgp; LinkedIn – Indian Institute of Technology
For news visit: https://kgpchronicle.iitkgp.ac.in/ 

What’s Heating India?

Green-less Urbanization leading to India’s Heat Islands

Graphic: Suman Sutradhar

Economic Times        The Week          News 18           Prabhat Khabar             Hindustan Times        The Republic World        The Hindu           Indian Express       Mongabay          Amar Ujala      Navbharat Times       Aaj Tak          Outlook           Our Bitcoin News         Telangana Today         Orissa Post        News Nation         Millenium Post       Udayavani        Yahoo News         Anandabazar         Deccan Chronicle       Financial Express            Zee Business      

An IIT Kharagpur study confirmed recently that the intensity of urban heat islands is positive in most cities (up to 2°C) in all seasons during day and night. The researchers from the Institute’s Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL) and Department of Architecture and Regional Planning have found that most big cities of India with population more than one million, have positive heat island intensity during daytime while simultaneously showing an increasing trend in the nighttime urban heat island intensity. The study ‘Anthropogenic forcing exacerbating the urban heat islands in India‘ has been published in the international Elsevier publication Journal of Environmental Management (https://doi.org/10.1016/j.jenvman.2019.110006) .

The increase in global surface temperature or global warming is a great concern, especially the Urban Heat Island (UHI) phenomena which is among the major consequences of the alteration of the earth’s surface due to human activities. The relatively warmer temperatures in urban areas compared to their suburban areas has potential health hazards, such as mortality due to high temperatures and heatwaves, and pollution in urban areas, opine the researchers Sarath Raj, Prof. Saikat Kumar Paul, Prof. Arun Chakraborty and Prof. Jayanarayanan Kuttippurath.

The key finding in the study is the role of anthropogenic activities in increasing the urban temperature in India. As per a World Bank report, approximately a third of the total population in India (~7% of the total world population) lived in cities in 2018. The trend shows an increase of urbanization by almost 4% in the last decade, meaning people have moved away from rural areas to find work and make a living in the cities. To accommodate the additional needs of this increasing population the cities have witnessed some of the major human activities pertaining to changes in land use and land cover through a decrease in green cover, increase in impervious surface area and infrastructural development. In addition, the UHI situation demands more energy (e.g. fans and air-conditioners) that would trigger greenhouse gas emissions. These have led to modify the temperature of a city, remarks said lead author of the paper Sarath Raj.

“Our study is a detailed and careful analysis of urban heat islands of India which is the difference between urban and surrounding rural land surface temperatures, across all seasons in 44 major cities of India, for the period 2001-2017. For the first time we have found evidence of mean daytime Surface UHI Intensity (SUHII) going up to 2 °C for most cities, as analysed from satellite temperature measurements in monsoon and post-monsoon periods,” said Prof. Arun Chakraborty.

These data are also supported by the analysis of aerosols, night lights, precipitation and vegetation in the study regions. In areas like Kolkata, Pune, Guwahati etc where the urban areas are surrounded by large vegetated areas in suburban regions there is an enhanced cooling effect on surface in suburban areas during day as against cities like Delhi, Jaipur and cities in arid regions.

“Evidence from our study suggests that more green spaces within the city and its boundary could reduce the temperature in the city and its neighbourhood. Conservation and expansion of vegetated areas, and preserving water bodies in and around cities could be an effective strategy to curb the effects of urban heat islands. The construction of green buildings and selection of materials for buildings and other infrastructure such as eco-friendly materials could also prove to be crucial to mitigate the effects of heat islands,” said co-author Prof. Jayanarayanan Kuttippurath.

An earlier study published in Scientific Reports journal in 2017 had pointed out the correlation in UHI and the location of the smart cities proposed to be developed. In a global warming context, because the temperature is increasing across the latitudes, the background warming could add even more heat in the urban areas. Therefore, anthropogenic activities that augment the greenhouse gas emissions and atmospheric pollution should also be controlled to counter the adverse effects of urban heat islands. Keeping in mind India’s strong commitment towards the Climate Action, despite focus towards urbanization, such studies shall aid the planning and management of urban areas by giving insights about the effects of nature and intensity of development, land cover and land use mix and the structure of future smart city projects.